Preparatory Course 2020 Curriculum

Biology

by Zbigniew Tabarowski

Suggested textbook: Biology, Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg (2014, 10th edition); ISBN-10: 1285423585; ISBN-13: 978-1285423586

The exact content of the course will be determined after discussion with participants in order to answer their specific needs.

- Day 1. Cell biology
- Day 2. Human anatomy and physiology
- Day 3. Biochemistry
- Day 4. Genetics
- Day 5. Examples of biology test questions from previous years and their solutions, worked out step by step

1. CELL BIOLOGY EUKARYOTIC CELL

- a. Plasma Membrane
- b. Membrane-bound Organelles
- c. Nucleus and Other Defining Characteristics
- d. Cytoskeleton
- e. Cell Cycle and Mitosis
- f. Cell Death

2. OTHER FORMS OF LIFE

- a. Fungi
- b. Virus Structure
- c. Viral Life Cycle
- d. Prokaryotic Cell: Bacteria Structure
- e. Prokaryotic Cell: Growth and Physiology
- f. Prokaryotic Cell: Genetics

3. SYSTEMS OF THE BODY

- a. Nerve Cell/Neural
- b. Muscle Cell/Contractile
- c. Endocrine System: Hormones
- d. Circulatory System
- e. Immune System: Innate and Adaptive Immunity
- f. Digestive System
- g. Excretory System
- h. Skeletal System
- i. Respiratory System
- j. Reproductive System

4. BIOCHEMISTRY

- a. DNA Structure and Function
- b. Genetic Code
- c. Protein Synthesis
- d. Enzyme Structure and Function
- e. Basic Metabolism

5. GENETICS

- a. Mendelian Conceptsb. Meiosis and Genetic Variability
- c. Evolution

Chemistry

by Anna Kolasa and Piotr Pietrzyk Suggested textbook: Course manuscript

General and Inorganic Chemistry

1. Stoichiometry of chemical reaction

- 1.1 Amount of substance (mole, Avogadro constant, extensive properties)
- **1.2** Molar concentration
- 1.3 Mass concentration
- 1.4 Stoichiometry and yield of chemical reaction

Calculus includes: balancing chemical equations; atomic and molar mass; number of moles; molar and mass (percentage) concentrations; preparation of a solution of a given concentration via dilution or mixing standard solutions; volume and density of a solution; yields of chemicals reactions; limiting reagents.

2. The properties of gases

- 2.1 Ideal gas equation of state
- 2.2 The gas laws
- 2.3 Molar volume

Calculus includes: gas pressure; amount of gases in standard, normal, and given conditions; molar volume; use of gas laws and perfect gas equation.

3. Elements of thermodynamics

- 3.1 Work, heat, and energy
- 3.2 The First Law (internal energy)
- 3.3 Enthalpy
- 3.4 Thermochemistry (standard enthalpy changes, Hess's law, enthalpies of formation and combustion)

Calculus includes: heat in constant volume and pressure; standard enthalpy changes; use of Hess's law; enthalpy of reaction from formation enthalpy and combustion enthalpy.

4. Chemical equilibrium

- 4.1 The reaction quotient and equilibrium constant
- **4.2** Acid-base equilibria in water (definitions of acids and bases, dissociation degree, acidity constant, autoprotolysis constant, pH scale, hydrolysis)
- 4.3 Dissociation of ionic solids and reactions in water (solubility constants)

Calculus includes: equilibrium constant K; initial, equilibrium and final concentrations of reactants; pH of the solutions of strong and weak acids and bases; dissociation constant and degree for weak acids (K_a) and bases (K_b) ; concentration of ions and solubility constant of ionic substances.

5. Redox reactions

- 5.1 Oxidation number
- **5.2** Electrochemical cells (notation, half-reactions and electrodes, the cell reaction, the cell potential)
- 5.3 Standard potentials
- **5.4** The electrochemical series

Calculus includes: oxidation number for inorganic and organic compounds; balancing redox equations; standard cell potential; zero-current cell potential for galvanic cell.

Schedule:

 1^{st} meeting – points 1 2^{nd} meeting – points 2 and 3 3^{rd} meeting – point 4 4^{th} meeting – point 4 5^{th} meeting – point 5

Organic Chemistry

1. Structure and bonding in organic chemistry

- 1.1 Hybridization and molecular shapes
- 1.2 Carbon skeletons with single and multiple bonds
- 1.3 Homologous series, isomerism
- 1.4 Functional groups
- 1.5 Lewis structures, formal charges, resonance
- 1.6 Structural and skeletal formulas of organic compounds

Problem-solving skills include: recognition of functional groups in biologically active compounds, drawing of structural formulas of various isomers, drawing Lewis structures for various molecules and resonance forms.

2. Classification and properties of organic compounds

- 2.1 Hydrocarbons and halogenated hydrocarbons
- 2.2 Alcohols, phenols, ethers
- 2.3 Aldehydes and ketones
- 2.4 Carboxylic acids and their derivatives
- 2.5 Amines and aminoacids

Problem-solving skills include: predicting the properties of a certain compounds on the basis of their structural formulas, comparing the acidity and basicity of various organic compounds.

3. Nomenclature of organic compounds

- 3.1 Hydrocarbons of various classes
- 3.2 Compounds with one functional group
- 3.3 Compounds with more functional groups, preferences in naming

Problem-solving skills include: Naming simple organic compounds, drawing structural formulas of certain organic compounds from their names.

4. Stereochemistry

- 4.1 Conformations
- *4.2* Z/E stereoisomers
- 4.3 Enantiomers and diastereomers
- 4.4 Models and notations to represent stereoisomers

Problem-solving skills include: usage of models to give examples of stereoisomers, suggesting various stereoisomers for one molecular formula, drawing the same stereoisomer in various representations.

5. Organic reactions

- 5.1 Nucleophiles and electrophiles
- 5.2 Mechanisms of organic reactions
- 5.3 Radical processes
- 5.4 Nucleophilic substitution versus elimination
- 5.5 Electrophilic substitution in aromatic compounds
- 5.6 Reduction and oxidation in organic chemistry
- 5.7 Rearrangements

Problem-solving skills include: giving examples of nucleophiles and electrophiles, showing nucleophilic and electrophilic centers in certain molecules, providing elements of retrosynthetic analysis for simple molecules.

6. Biomolecules

- 6.1 Peptides and proteins
- 6.2 Lipids
- 6.3 Carbohydrates
- 6.4 Heterocyclic bases, nucleotides and nucleic acids

Problem-solving skills include: interpreting the chemical structure of lipids, proteins and nucleic acids, writing the equations of certain fat or dipeptide formation.

Schedule:

- 1^{st} meeting point 1 2^{nd} meeting point 2 3^{rd} meeting point 3 4^{th} meeting point 4 5^{th} meeting points 5 and 6

Logic and Critical Thinking

by Agnieszka Pac

Suggested reading:

- 1. McMunn R. IQ and Aptitude Tests: Numerical Ability, Verbal reasoning, spatial tests, diagrammatic reasoning and problem solving tests. How2become Ltd. 2014.
- 2. Cottrell S. Critical Thinking Skills. Developing Effective Analysis and Argument. Palgrave Macmillan, 2011

Day 1.Logical Reasoning

- 1. How to solve different logical tests/quizzes
- 1.1 Number series
- 1.2 Syllogism
- 1.3 Direction tests
- 1.4 Seating/arrangements
- 2. Assumptions, conclusions, Cause and Effect

Day 2. Graph/tables interpretation - How to read data and make proper conclusions